
[Gobi, 2(5): May, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1197-1206] 

 

IJESRT   
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 
DAC: Generic and Automatic Address Configuration for Data Center Networks           

P. Gobi*1,  S.Arulselvi2, Dr T.Kirankumar3   
*1,2,3 Bharath University, Chennai, India 

rpgobi55@gmail.com          
Abstract 

DAC, a generic and automatic Data center Address Configuration system. With an automatically generated 
blueprint that defines the connections of servers and switches labeled by logical Ids, e.g., IP addresses, DAC first 
learns the physical topology labeled by device IDs, e.g., MAC addresses. Then, at the core of DAC is its device-to-
logical ID mapping and malfunction detection. DAC makes an innovation in abstracting the device-to-logical ID 
mapping to the graph isomorphism problem and solves it with low time complexity by leveraging the attributes of 
data center network topologies. Its malfunction detection scheme detects errors such as device and link failures and 
mis-wirings, including the most difficult case where mis-wirings do not cause any node degree change. We have 
evaluated DAC via simulation, implementation, and experiments.  
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Introduction  

In this paper, we have designed, evaluated, 
and implemented DAC, a generic and automatic Data 
center Address Configuration system. DAC, a 
generic and automatic Data center Address 
Configuration system. With an automatically 
generated blueprint that defines the connections of 
servers and switches labeled by logical Ids, e.g., IP 
addresses, DAC first learns the physical topology 
labeled by device IDs, e.g., MAC addresses. Then, at 
the core of DAC is its device-to-logical ID mapping 
and malfunction detection. DAC makes an innovation 
in abstracting the device-to-logical ID mapping to the 
graph isomorphism problem and solves it with low 
time complexity by leveraging the attributes of data 
center network topologies. Its malfunction detection 
scheme detects errors such as device and link failures 
and mis-wirings, including the most difficult case 
where mis-wirings do not cause any node degree 
change. We have evaluated DAC via simulation, 
implementation, and experiments. The requirements 
specification is a technical specification of 
requirements for the software products. It is the first 
step in the requirements analysis process it lists the 
requirements of a particular software system 
including functional, performance and security 
requirements. The requirements also provide usage 
scenarios from a user, an operational and an 
administrative perspective. The purpose of software 
requirements specification is to provide a detailed 
overview of the software project, its parameters and 
goals. This describes the project target audience and 
its user interface, hardware and software   

 
requirements. It defines how the client, team and 
audience see the project and its functionality. Data 
center networks encode locality and topology 
information into their server and switch addresses for 
performance and routing purposes. For this reason, 
the traditional address configuration protocols such 
as DHCP require a huge amount of manual input, 
leaving them error-prone. In this paper, we present  
DAC, a generic and automatic Data center Address 
Configuration  system. With an automatically 
generated blueprint that defines  the connections of 
servers and switches labeled by logical Ids, e.g., IP 
addresses, DAC first learns the physical topology 
labeled  by device IDs, e.g., MAC addresses. Then, at 
the core of DAC  is its device-to-logical ID mapping 
and malfunction detection. DAC makes an innovation 
in abstracting the device-to-logical ID  mapping to 
the graph isomorphism problem and solves it with 
low time complexity by leveraging the attributes of 
data center  network topologies. Its malfunction 
detection scheme detects errors such as device and 
link failures and mis-wirings, including  the most 
difficult case where miswirings do not cause any 
node degree change. We have evaluated DAC via 
simulation, implementation, and experiments. Our 
simulation results show that DAC  can accurately 
find all the hardest-to-detect malfunctions and can 
auto configure a large data center with 3.8 million 
devices in 46 s. In our implementation, we 
successfully auto configure a small 64-server BCube 
network within 300 ms and show that DAC is a 
viable solution for data center auto configuration.  
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CCB (communication channel building): from DAC 
manager broadcasts the message with level 0 to the 
last node in the network gets its level;  timeout: there 
is no change in neighboring nodes for at leaf nodes;  
TC (physical topology collection): from the first leaf 
node sends out its TCM to DAC manager receives 
the entire network topology; mapping: device-to-
logical ID mapping time including the I/O time; LD 
(logical IDs dissemination): from DAC manager, 
sends out the mapping information to all the devices 
to get their logical IDs. 
          The newly proposed data center network 
(DCN) structures go one step further by encoding 
their topology information into their logical IDs. 
These logical IDs can take the form of IP address, 
MAC address, or even newly invented IDs. These 
structures then leverage the topological information 
embedded in the logical IDs for scalable and efficient 
routing. For example, Portland switches choose a 
routing path by exploiting the location information of 
destination MAC. BCube servers build a source 
routing path by modifying one digit at one step based 
on source and destination BCube IDs. For all the 
cases above, we need to configure the logical Ids, 
which may be IP or MAC addresses or BCube, for all 
the servers and switches. Meanwhile, in the physical 
topology, all the devices are identified by their 
unique device IDs, such as MAC addresses.  
When the channel is built, the next step is to collect 
the physical topology. For this, we introduce a 
Physical topology Collection Protocol (PCP). In PCP, 
the physical topology information, i.e., the 
connection information between each node is 
propagated bottom–up from the leaf devices to the 
root (i.e., DAC manager) layer by layer. After is 
collected by DAC manager, we go to the device-to-
logical ID mapping module. Device-to-Logical ID 
mapping after has been collected; we come to device-
to-logical ID mapping, which is a key component of 
DAC. As introduced in Section I, the challenge is 
how to have the mapping reflect the topological 
relationship of these devices. To this end, we devise , 
a fast one-to-one mapping engine, to realize this 
functionality. 

We consider and categorize three 
malfunction types in data centers: node, link, and 
mis-wiring. The first type occurs when a given server 
or switch breaks down from hardware or software 
reasons, causing it to be completely unreachable and 
disconnected from the network. The second one 
occurs when the cable or network card is broken or 
not properly plugged in so that the connectivity 
between devices on that link is lost. The third one 
occurs when wired cables are different from those in 
the blueprint. These malfunctions may introduce 
severe problems and downgrade the performance. 

Materials and Methods 
Existing System  

There are very few existing solutions, and 
none of them can meet all the requirements above. In 
this paper, we address these problems by proposing 
DAC—a generic and automatic Data center Address 
Configuration system for the existing and future data 
center networks. To make our solution generic, we 
assume that we only have a blueprint of the to-be-
configured data center network, which defines how 
the servers and switches are connected and labels 
each device with a logical ID. The blueprint can be 
automatically generated because all the existing data 
center network structures are quite regular and can be 
described either recursively or iteratively.  
Proposed System  

The newly proposed data center network 
(DCN) structures go one step further by encoding 
their topology information into their logical IDs. 
These logical IDs can take the form of IP address, 
MAC address, or even newly invented IDs. These 
structures then leverage the topological information 
embedded in the logical IDs for scalable and efficient 
routing. For example, Portland switches choose a 
routing path by exploiting the location information of 
destination MAC. BCube servers build a source 
routing path by modifying one digit at one step based 
on source and destination BCube IDs. For all the 
cases above, we need to configure the logical Ids, 
which may be IP or MAC addresses or BCube, for all 
the servers and switches. Meanwhile, in the physical 
topology, all the devices are identified by their 
unique device IDs, such as MAC addresses.  
Event Scheduler 

This section talks about the discrete event 
schedulers of NS. As described in the Overview 
section, the main users of an event scheduler are 
network components that simulate packet-handling 
delay or that need timers. Figure (a) shows each 
network object using an event scheduler. Note that a 
network object that issues an event is the one who 
handles the event later at scheduled time. Also note 
that the data path between network objects is 
different from the event path. Actually, packets are 
handed from one network object to another using 
send(Packet* p) {target_->recv(p)}; method of the 
sender and recv(Packet*, Handler* h = 0) method of 
the receiver. 
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Figure (a) Discrete Event Scheduler 

 
NS has two different types of event 

schedulers implemented. These are real-time and 
non-real-time schedulers. For a non-real-time 
scheduler, three implementations (List, Heap and 
Calendar) are available, even though they are all 
logically perform the same. This is because of 
backward compatibility: some early implementation 
of network components added by a user (not the 
original ones included in a package) may use a 
specific type of scheduler not through public 
functions but hacking around the internals. The 
Calendar non-real-time scheduler is set as the default. 
The real-time scheduler is for emulation, which allow 
the simulator to interact with a real network. 
Currently, emulation is under development although 
an experimental version is available. The following is 
an example of selecting a specific event scheduler:  
. . . 
set ns [new Simulator] 
$ns use-scheduler Heap 
. . .  

Another use of an event scheduler is to 
schedule simulation events, such as when to start an 
FTP application, when to finish a simulation, or for 
simulation scenario generation prior to a simulation 
run. An event scheduler object itself has simulation 
scheduling member functions such as at time "string" 
that issue a special event called AtEvent at a 
specified simulation time. An "AtEvent" is actually a 
child class of "Event", which has an additional 
variable to hold the given string. However, it is 
treated the same as a normal (packet related) event 
within the event scheduler. When a simulation is 
started, and as the scheduled time for an AtEvent in 
the event queue comes, the AtEvent is passed to an 
"AtEvent handler" that is created once and handles all 
AtEvents, and the OTcl command specified by the 
string field of the AtEvent is executed. The following 
is a simulation event scheduling line added version of 
the above example. 

 
 

. . . 
set ns [new Simulator] 
$ns use-scheduler Heap 
$ns at 300.5 "complete_sim" 
. . . 
proc complete_sim {} { 
. . . 
}  
 
ou might noticed from the above example that at time 
"string" is a member function of the Simulator object 
(set ns [new Simulator]). But remember that the 
Simulator object just acts as a user interface, and it 
actually calls the member functions of network 
objects or a scheduler object that does the real job. 
Followings are a partial list and brief description of 
Simulator object member functions that interface 
with scheduler member functions:  
 

 
Network Components 

This section talks about the NS components, 
mostly compound network components. The root of 
the hierarchy is the TclObject class that is the 
superclass of all OTcl library objects (scheduler, 
network components, timers and the other objects 
including NAM related ones). As an ancestor class of 
Tcl Object, Ns Object class is the superclass of all 
basic network component objects that handle packets, 
which may compose compound network objects such 
as nodes and links. The basic network components 
are further divided into two subclasses, Connector 
and Classifier, based on the number of the possible 
output data paths. The basic network objects that 
have only one output data path are under the 
Connector class, and switching objects that have 
possible multiple output data paths are under the 
Classifier class.  
(a)Node and Routing  

A node is a compound object composed of a 
node entry object and classifiers as shown in 
Figure(b) There are two types of nodes in NS. A 
unicast node has an address classifier that does 
unicast routing and a port classifier. A multicast 
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node, in addition, has a classifier that classify 
multicast packets from unicast packets and a 
multicast classifier that performs multicast routing.  

Figure(b) Node (Unicast and Multicast) 
In NS, Unicast nodes are the default nodes. To 

create Multicast nodes the user must explicitly notify 
in the input OTcl script, right after creating a 
scheduler object, that all the nodes that will be 
created are multicast nodes. After specifying the node 
type, the user can also select a specific routing 
protocol other than using a default one. 
(b)Unicast 
- $ns rtproto type 
- type: Static, Session, DV, cost, multi-path  
   
(c)Multicast 
- $ns multicast (right after set $ns [new Scheduler]) 
- $ns mrtproto type 
- type: CtrMcast, DM, ST, BST  
(d)Link  

A link is another major compound object in NS. 
When a user creates a link using a duplex-link 
member function of a Simulator object.One thing to 
note is that an output queue of a node is actually 
implemented as a part of simplex link object. Packets 
dequeued from a queue are passed to the Delay object 
that simulates the link delay, and packets dropped at 
a queue are sent to a Null Agent and are freed there. 
Finally, the TTL object calculates Time To Live 
parameters for each packet received and updates the 
TTL field of the packet.  
(e)Tracing  

In NS, network activities are traced around 
simplex links. If the simulator is directed to trace 
network activities (specified using $ns trace-all file or 
$ns namtrace-all file), the links created after the 
command will have the following trace objects 
inserted as shown in Figure(c) Users can also 
specifically create a trace object of type type between 
the given src and dst nodes using the create-trace 
{type file src dst} command. 

 Figure(c) Inserting Trace Objects 
When each inserted trace object (i.e. EnqT, 

DeqT, DrpT and RecvT) receives a packet, it writes 
to the specified trace file without consuming any 
simulation time, and passes the packet to the next 
network object. The trace format will be examined in 
the General Analysis Example section.  

 
Queue Monitor  

Basically, tracing objects are designed to 
record packet arrival time at which they are located. 
Although a user gets enough information from the 
trace, he or she might be interested in what is going 
on inside a specific output queue. For example, a user 
interested in RED queue behavior may want to 
measure the dynamics of average queue size and 
current queue size of a specific RED queue (i.e. need 
for queue monitoring). Queue monitoring can be 
achieved using queue monitor objects and snoop 
queue objects as shown in Figure(d).  

 
Figure(d) Monitoring Queue 

When a packet arrives, a snoop queue object 
notifies the queue monitor object of this event. The 
queue monitor using this information monitors the 
queue. A RED queue monitoring example is shown 
in the RED Queue Monitor Example section. Note 
that snoop queue objects can be used in parallel with 
tracing objects even though it is not shown in the 
above figure.  
(a)Packet Flow Example  

Until now, the two most important network 
components (node and link) were examined. 
Figure(e) shows internals of an example simulation 



[Gobi, 2(5): May, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1197-1206] 

 

network setup and packet flow. The network consist 
of two nodes (n0 and n1) of which the network 
addresses are 0 and 1 respectively. A TCP agent 
attached to n0 using port 0 communicates with a TCP 
sink object attached to n1 port 0. Finally, an FTP 
application (or traffic source) is attached to the TCP 
agent, asking to send some amount of data.  

  
Figure(e) Packet Flow Example 

Note that the above figure does not show the 
exact behavior of a FTP over TCP. It only shows the 
detailed internals of simulation network setup and a 
packet flow. 
(b)Packet 

A NS packet is composed of a stack of 
headers, and an optional data space. As briefly 
mentioned in the "Simple Simulation Example" 
section, a packet header format is initialized when a 
Simulator object is created, where a stack of all 
registered (or possibly useable) headers, such as the 
common header that is commonly used by any 
objects as needed, IP header, TCP header, RTP 
header (UDP uses RTP header) and trace header, is 
defined, and the offset of each header in the stack is 
recorded. What this means is that whether or not a 
specific header is used, a stack composed of all 
registered headers is created when a packet is 
allocated by an agent, and a network object can 
access any header in the stack of a packet it processes 
using the corresponding offset value.  
    Usually, a packet only has the header stack 
(and a data space pointer that is null). Although a 
packet can carry actual data (from an application) by 
allocating a data space, very few application and 
agent implementations support this. This is because it 
is meaningless to carry data around in a non-real-time 
simulation. However, if you want to implement an 
application that talks to another application cross the 
network, you might want to use this feature with a 
little modification in the underlying agent 
implementation. Another possible approach would be 
creating a new header for the application and 

modifying the underlying agent to write data received 
from the application to the new header. The second 
approach is shown as an example in a later section 
called "Add New Application and Agent". 
 
Trace Analysis Example 

This section shows a trace analysis example. 
Example(1) is the same OTcl script as the one in the 
"Simple Simulation Example" section with a few 
lines added to open a trace file and write traces to it. 
For the network topology it generates and the 
simulation scenario.To run this script download "ns-
simple-trace.tcl" and type "ns ns-simple-trace.tcl" at 
your shell prompt. 
 

 
Example(1). Trace Enabled Simple NS Simulation 

Script 
Running the above script generates a NAM 

trace file that is going to be used as an input to NAM 
and a trace file called "out.tr" that will be used for our 
simulation analysis. Each trace line starts with an 
event (+, -, d, r) descriptor followed by the simulation 
time (in seconds) of that event, and from and to node, 
which identify the link on which the event occurred. 
Look at Figure(c) in the "Network Components" 
section to see where in a link each type of event is 
traced. The next information in the line before flags 
(appeared as "------" since no flag is set) is packet 
type and size (in Bytes). Currently, NS implements 
only the Explicit Congestion Notification (ECN) bit, 
and the remaining bits are not used. The next field is 
flow id (fid) of IPv6 that a user can set for each flow 
at the input OTcl script. Even though fid field may 
not used in a simulation, users can use this field for 
analysis purposes. The fid field is also used when 



[Gobi, 2(5): May, 2013]   ISSN: 2277-9655 
                                                                                                               

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1197-1206] 

 

specifying stream color for the NAM display. The 
next two fields are source and destination address in 
forms of "node.port". The next field shows the 
network layer protocol's packet sequence number. 
Note that even though UDP implementations do not 
use sequence number, NS keeps track of UDP packet 
sequence number for analysis purposes. The last field 
shows the unique id of the packet.  

Having simulation trace data at hand, all one 
has to do is to transform a subset of the data of 
interest into a comprehensible information and 
analyze it. Down below is a small data transformation 
example. This example uses a command written in 
perl called "column" that selects columns of given 
input. To make the example work on your machine, 
you should download "column" and make it 
executable (i.e. "chmod 755 column"). Following is a 
tunneled shell command combined with awk, which 
calculates CBR traffic jitter at receiver node (n3) 
using data in "out.tr", and stores the resulting data in 
"jitter.txt".  
cat out.tr | grep " 2 3 cbr " | grep ^r | column 1 10 | awk '{dif = $2 - old2; if(dif==0) dif = 1; if(dif > 0) 
{printf("%d\t%f\n", $2, ($1 - old1) / dif); old1 = $1; old2 = $2}}' > jitter.txt  
This shell command selects the "CBR packet receive" 
event at n3, selects time (column 1) and sequence 
number (column 10), and calculates the difference 
from last packet receive time divided by difference in 
sequence number (for loss packets) for each sequence 
number. The following is the corresponding jitter 
graph that is generated using gnuplot. The X axis 
show the packet sequence number and the Y axis 
shows simulation time in seconds.  

 
Figure(f) CBR Jitter at The Receiving Node (n3) 

You might also check for more utilities in the Example 
Utilities section. 

This section showed an example of how to 
generate traces in NS, how to interpret them, and how 
to get useful information out from the traces. In this 
example, the post simulation processes are done in a 
shell prompt after the simulation. However, these 
processes can be included in the input OTcl script, 
which is shown in the next section. 

The following is the explanation of the 
script above. In general, an NS script starts with 
making a Simulator object instance.set ns [new 
Simulator]: generates an NS simulator object 
instance, and assigns it to variable ns (italics is used 
for variables and values in this section). What this 
line does is the following: 
Initialize the packet format (ignore this for now) 
Create a scheduler (default is calendar scheduler) 
Select the default address format (ignore this for 
now)The "Simulator" object has member functions 
that do the following: 
1. Create compound objects such as nodes and links       
(described later)  
2.Connect network component objects created (ex. 
attach-agent)  
3.Set network component parameters (mostly for 
compound objects)  
4.Create connections between agents (ex. make 
connection between a "tcp" and "sink")  
5.Specify NAM display options Etc. 
  Most of member functions are for simulation setup 
(referred to as plumbing functions in the Overview 
section) and scheduling, however some of them are 
for the NAM display. The "Simulator" object 
member function implementations are located in the 
"ns-2/tcl/lib/ns-lib.tcl" file. 
1.$ns color fid color: is to set color of the packets for 
a flow specified by the flow id (fid). This member 
function of "Simulator" object is for the NAM 
display, and has no effect on the actual simulation.    
2.$ns namtrace-all file-descriptor: This member 
function tells the simulator to record simulation 
traces in NAM input format. It also gives the file 
name that the trace will be written to later by the 
command $ns flush-trace. Similarly, the member 
function trace-all is for recording the simulation trace 
in a general format. 
3.proc finish {}: is called after this simulation is over 
by the command $ns at 5.0 "finish". In this function, 
post-simulation processes are specified. 
4.set n0 [$ns node]: The member function node 
creates a node. A node in NS is compound object 
made of address and port classifiers (described in a 
later section). Users can create a node by separately 
creating an address and a port classifier objects and 
connecting them together. However, this member 
function of Simulator object makes the job easier. To 
see how a node is created, look at the files: "ns-
2/tcl/libs/ns-lib.tcl" and "ns-2/tcl/libs/ns-node.tcl". 
5.$ns duplex-link node1 node2 bandwidth delay 
queue-type:. creates two simplex links of specified 
bandwidth and delay, and connects the two specified 
nodes. In NS, the output queue of a node is 
implemented as a part of a link, therefore users 
should specify the queue-type when creating links. In 
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the above simulation script, DropTail queue is used. 
If the reader wants to use a RED queue, simply 
replace the word DropTail with RED. The NS 
implementation of a link is shown in a later section. 
Like a node, a link is a compound object, and users 
can create its sub-objects and connect them and the 
nodes. Link source codes can be found in "ns-
2/tcl/libs/ns-lib.tcl" and "ns-2/tcl/libs/ns-link.tcl" 
files. One thing to note is that you can insert error 
modules in a link component to simulate a lossy link 
(actually users can make and insert any network 
objects). Refer to the NS documentation to find out 
how to do this 
 6.$ns queue-limit node1 node2 number: This line 
sets the queue limit of the two simplex links that 
connect node1 and node2 to the number specified. At 
this point, the authors do not know how many of 
these kinds of member functions of Simulator objects 
are available and what they are. Please take a look at 
"ns-2/tcl/libs/ns-lib.tcl" and "ns-2/tcl/libs/ns-link.tcl", 
or NS documentation for more information. 
7.$ns duplex-link-op node1 node2 ...: The next 
couple of lines are used for the NAM display. To see 
the effects of these lines, users can comment these 
lines out and try the simulation. Now that the basic 
network setup is done, the next thing to do is to setup 
traffic agents such as TCP and UDP, traffic sources 
such as FTP and CBR, and attach them to nodes and 
agents respectively. 
8.set tcp [new Agent/TCP]: This line shows how to 
create a TCP agent. But in general, users can create 
any agent or traffic sources in this way. Agents and 
traffic sources are in fact basic objects (not 
compound objects), mostly implemented in C++ and 
linked to OTcl. Therefore, there are no specific 
Simulator object member functions that create these 
object instances. To create agents or traffic sources, a 
user should know the class names these objects 
(Agent/TCP, Agnet/TCPSink, Application/FTP and 
so on). This information can be found in the NS 
documentation or partly in this documentation. But 
one shortcut is to look at the "ns-2/tcl/libs/ns-
default.tcl" file. This file contains the default 
configurable parameter value settings for available 
network objects. Therefore, it works as a good 
indicator of what kind of network objects are 
available in NS and what are the configurable 
parameters.   
9.$ns attach-agent node agent: The attach-agent 
member function attaches an agent object created to a 
node object. Actually, what this function does is call 
the attach member function of specified node, which 
attaches the given agent to itself. Therefore, a user 
can do the same thing by, for example, $n0 attach 
$tcp. Similarly, each agent object has a member 
function attach-agent that attaches a traffic source 

object to itself. 
10.$ns connect agent1 agent2: After two agents that 
will communicate with each other are created, the 
next thing is to establish a logical network connection 
between them. This line establishes a network 
connection by setting the destination address to each 
others' network and port address pair. Assuming that 
all the network configuration is done, the next thing 
to do is write a simulation scenario (i.e. simulation 
scheduling). The Simulator object has many 
scheduling member functions. However, the one that 
is mostly used is the following: 
11.$ns at time "string": This member function of a 
Simulator object makes the scheduler (scheduler_ is 
the variable that points the scheduler object created 
by [new Scheduler] command at the beginning of the 
script) to schedule the execution of the specified 
string at given simulation time. For example, $ns at 
0.1 "$cbr start" will make the scheduler call a start 
member function of the CBR traffic source object, 
which starts the CBR to transmit data. In NS, usually 
a traffic source does not transmit actual data, but it 
notifies the underlying agent that it has some amount 
of data to transmit, and the agent, just knowing how 
much of the data to transfer, creates packets and 
sends them.  

After all network configuration, scheduling 
and post-simulation procedure specifications are 
done, the only thing left is to run the simulation. This 
is done by $ns run. 

 
Design and Implementation Constraints 
Constraints in Analysis 
1.Constraints as Informal Text 
2.Constraints as Operational Restrictions 
3.Constraints Integrated in Existing Model   
    Concepts 
4.Constraints as a Separate Concept 
5.Constraints Implied by the Model Structure 
Constraints in Design 
1.Determination of the Involved Classes 
2.Determination of the Involved Objects 
3.Determination of the Involved Actions 
4.Determination of the Require Clauses 
5.Global actions and Constraint Realization 
 
External Interface Requirements 
User Interfaces 
1.   Graphical User Interfaces not in this product. 
2.   Users are communicated with Buttons with  
      network animator. 
Hardware Interfaces 

Linux environment of system and basic need 
of system feature like random access memory etc. 
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Software Interfaces 
1.This software is interacted with the TCP/IP    
   protocol. 
2.This product is interacted with the and linux  
3.This product is interacted with the ServerSocket  
4.This product is interacted with TCL 
 
Performance Requirements 

The maximum satisfactory response time to 
be experienced most of the time for each distinct type 
of user-computer interaction, along with a definition 
of most of the time. Response time is measured from 
the time that the user performs the action that says 
"Go" until the user receives enough feedback from 
the computer to continue the task. It is the user's 
subjective wait time. It is not from entry to a 
subroutine until the first write statement. If the user 
denies interest in response time and indicates that 
only the result is of interest, you can ask whether "ten 
times your current estimate of stand-alone execution 
time" would be acceptable. If the answer is "yes," 
you can proceed to discuss throughput. Otherwise, 
you can continue the discussion of response time 
with the user's full attention. The response time that 
is minimally acceptable the rest of the time. A longer 
response time can cause users to think the system is 
down. You also need to specify rest of the time; for 
example, the peak minute of a day, 1 percent of 
interactions. Response time degradations can be more 
costly or painful at a particular time of the day. 
 
Architecture of Node failure: 

 
Figure(e) Architecture of  node failure 

Sequence Diagram: 

 

Figure(g) Sequence diagram 
 
Activity Diagram  

 
Figure(h) Activity Diagram 

 
System Design 
Modules 
a. Devices-to-Logical ID Mapping  
b. Malfunction Detection  
c. Simulation. 
a. Devices-to-Logical ID Mapping  

When the channel is built, the next step is to 
collect the physical topology. For this, we introduce a 
Physical topology Collection Protocol (PCP). In PCP, 
the physical topology information, i.e., the 
connection information between each node is 
propagated bottom–up from the leaf devices to the 
root (i.e., DAC manager) layer by layer. After is 
collected by DAC manager, we go to the device-to-
logical ID mapping module. Device-to-Logical ID 
mapping after has been collected; we come to device-
to-logical ID mapping, which is a key component of 
DAC. As introduced in Section I, the challenge is 
how to have the mapping reflect the topological 
relationship of these devices. To this end, we devise, 
a fast one-to-one mapping engine, to realize this 
functionality. 
b. Malfunction Detection: 

We consider and categorize three 
malfunction types in data centers: node, link, and 
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miswiring. The first type occurs when a given server 
or switch breaks down from hardware or software 
reasons, causing it to be completely unreachable and 
disconnected from the network. The second one 
occurs when the cable or network card is broken or 
not properly plugged in so that the connectivity 
between devices on that link is lost. The third one 
occurs when wired cables are different from those in 
the blueprint. These malfunctions may introduce 
severe problems and downgrade the performance.  
c. Simulation: 

Our simulation results show that DAC can 
accurately find all the hardest-to-detect malfunctions 
and can auto configure a large data center with large 
amount devices. In our implementation on a  B Cube 
test bed, DAC has used. To successfully auto 
configure all the servers. Our implementation 
experience and experiments show that DAC is a 
viable solution for data center network auto 
configuration. we focus on simulations on the mis-
wirings where there is no degree change. We evaluate 
the accuracy of our algorithm proposed in detecting 
such malfunction.  

 
Result & Conclusion 
TCP Throughput Node and Link failure 

 
Above Diagram shows that, the link failure occurs only 
1-second throughput degdation, while the node failure 
occurs a 5-second throughput outage that corresponds 

to our link-state timeout value. 
 

 
 
 
 
 
 
 
 
 

Aggregate TCP Throughput 

 
The TCP throughput is recovered to the best 

value after only a few seconds. second, our 
implementation detects link failures much faster than 
node failure, because of using the medium sensing 
cause queue to build up at each sender’s buffer. All 
TCP connections at a server the same sending buffer 
on a network port. Therefore, all TCP connections 
are slowed down, including those not traversing the 
root switch. This results iin much smaller aggregate 
TCP throughput. 

 
Conclusion 

The results provided within this paper 
designed, evaluated, and implemented DAC, a 
generic and automatic Data center Address 
Configuration system. Our simulation results show 
that DAC can accurately find all the hardest-to-detect 
malfunctions and can auto configure a large data 
center . At the core of DAC is its device-to-logical ID 
mapping and malfunction detection. DAC has made 
an innovation in abstracting the device-to-logical ID 
mapping to the graph isomorphism problem and 
solved it in low time complexity by leveraging the 
sparsity and symmetry (or asymmetry) of data center 
structures.  Our implementation experience and 
experiments show that DAC is a viable solution for 
data center network auto configuration.  
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